O OMPeoma de Treponema pallidum e a busca por uma vacina contra sífilis.

Autores

  • Everton B. Bettin Department of Medicine, UConn Health, Farmington, Connecticut, USA
  • Andre A. Grassmann Department of Medicine, UConn Health, Farmington, Connecticut, USA
  • Kelly L. Hawley Department of Medicine, UConn Health, Farmington, Connecticut, USA
  • Melissa J. Caimano Department of Medicine, UConn Health, Farmington, Connecticut, USA;
  • Justin D. Radolf Department of Medicine, UConn Health, Farmington, Connecticut, USA

DOI:

https://doi.org/10.5327/DST-2177-8264-1480

Resumo

Apesar de mais de um século de investigação, o desenvolvimento de uma vacina contra a sífilis tem sido historicamente dificultado pela membrana externa incomum de Treponema pallidum subsp. pallidum (TPA) e pela incapacidade de propagar a espiroqueta in vitro. Observações iniciais utilizando o modelo animal coelho demonstraram que uma imunidade protetora mediada por anticorpos é possível. A recente descoberta do repertório de proteínas de membrana externa (OMPs) de TPA definiu os possiveis alvos de anticorpos protetores e promoveu a base para o desenvolvimento atual de vacinas contra sífilis. Baseando-se em uma abordagem denominada “Learning from nature”, o mapeamento dos anticorpos induzidos durante a infecção natural contra as OMPs permitiu a identificação e priorização de loops extracelulares (ECLs) como alvos vacinais. A imunização de animais com scaffolds proteicos exibindo esses alvos gera títulos elevados de anticorpos capazes de reconhecer regiões expostas na superfície do espiroqueta. Avanços recentes no cultivo in vitro de longo prazo e na manipulação genética de TPA possibilitaram o desenvolvimento de ensaios para avaliar diretamente a atividade funcional desses anticorpos na promoção da opsonofagocitose, inibição do crescimento, comprometimento da motilidade e ruptura da membrana externa. Plataformas de segunda geração estão sendo exploradas para aumentar a imunogenicidade, simplificar a produção e facilitar a escalabilidade desses imunógenos até ensaios clínicos. Paralelamente, pesquisadores estão identificando a variabilidade da sequência de OMPs entre cepas circulantes de TPA para compreender como mutações podem afetar a ligação de anticorpos e a eficácia global da vacina. Coletivamente, esses avanços posicionam estrategicamente o campo para englobar conhecimentos estruturais, imunológicos e microbiológicos, visando finalmente, alcançar uma vacina eficaz contra a sífilis.

Downloads

Não há dados estatísticos.

Referências

Galli, M. & Fois, L. The Centenary Series - STIs Through the Ages: The dawn of the syphilis pandemic in the Old World: history and geography of syphilis in the early sixteenth century. Sex Transm Infect 101, 355-360 (2025).

Waugh, M. The centenary of Treponema pallidum: on the discovery of Spirochaeta pallida. Skinmed 4, 313-315 (2005).

Radolf, J.D. & Kumar, S. The Treponema pallidum outer membrane. Curr Top Microbiol Immunol 415, 1-38 (2018).

Chesney, A.M. Immunity in syphilis. Medicine (Baltimore) 5(1926).

Radolf, J.D. & Lukehart, S.A. Immunology of Syphilis. in Pathogenic Treponemes: Cellular and Molecular Biology (eds. Radolf, J.D. & Lukehart, S.A.) 285-322 (Caister Academic Press, Norfolk, UK, 2006).

Magnuson, H.J., Rosenau, B.J. & Clark, J.W., Jr. The duration of acquired immunity in experimental syphilis. Am J Syph Gonorrhea Vener Dis 33, 297-302 (1949).

Magnuson, H.J. Current concepts of immunity in syphilis. Am J Med 5, 641-654 (1948).

Turner, T.B. Protective antibodies in the serum of syphilitic rabbits. J Exp Med 69, 867-890 (1939).

Turner, T.B., Kluth, F.C. & et al. Protective antibodies in the serum of syphilitic patients. Am J Hyg 48, 173-181 (1948).

Perine, P.L., Weiser, R.S. & Klebanoff, S.J. Immunity to syphilis. I. Passive transfer in rabbits with hyperimmune serum. Infect Immun 8, 787-790 (1973).

Bishop, N.H. & Miller, J.N. Humoral immunity in experimental syphilis. I. The demonstration of resistance conferred by passive immunization. J Immunol 117, 191-196 (1976).

Lukehart, S.A. & Miller, J.N. Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol 121, 2014-2024 (1978).

Delgado, K.N., et al. Development and utilization of Treponema pallidum expressing green fluorescent protein to study spirochete-host interactions and antibody-mediated clearance: expanding the toolbox for syphilis research. mBio 16, e0325324 (2025).

Radolf, J.D., et al. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol (2016).

Radolf, J.D., Norgard, M.V. & Schulz, W.W. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci U S A 86, 2051-2055 (1989).

Cox, D.L., Chang, P., McDowall, A.W. & Radolf, J.D. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun 60, 1076-1083 (1992).

Cox, D.L., Akins, D.R., Porcella, S.F., Norgard, M.V. & Radolf, J.D. Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 15, 1151-1164 (1995).

Deka, R.K., et al. Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J Biol Chem 282, 5944-5958 (2007).

Weinstock, G.M., Hardham, J.M., McLeod, M.P., Sodergren, E.J. & Norris, S.J. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol Rev 22, 323-332 (1998).

Fraser, C.M., et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375-388 (1998).

Cox, D.L., et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78, 5178-5194 (2010).

Koebnik, R., Locher, K.P. & Van Gelder, P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37, 239-253 (2000).

Hawley, K.L., et al. Structural modeling of the Treponema pallidum OMPeome: a roadmap for deconvolution of syphilis pathogenesis and development of a syphilis vaccine. J Bacteriol 203, e0008221 (2021).

Delgado, K.N., et al. Pyrococcus furiosus thioredoxin (PfTrx) scaffolds displaying extracellular loops of Treponema pallidum outer membrane proteins: “learning from nature” in the search for syphilis vaccine candidates. in 2023 STI and HIV World Congress (Chicago, IL, 2023).

Liu, A., et al. New pathways in syphilis vaccine development. Sex Transm Dis (2024).

Carpenter, E.P., Beis, K., Cameron, A.D. & Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18, 581-586 (2008).

Hayashi, S., Buchanan, S.K. & Botos, I. The name Is barrel, beta-barrel. Methods Mol Biol 2778, 1-30 (2024).

Abramson, J., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (2024).

Cramer, P. AlphaFold2 and the future of structural biology. Nat Struct Mol Biol 28, 704-705 (2021).

Canali, E., et al. A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci Rep 4, 4729 (2014).

Delgado, K.N., et al. Extracellular loops of the Treponema pallidum FadL orthologs TP0856 and TP0858 elicit IgG antibodies and IgG(+)-specific B-cells in the rabbit model of experimental syphilis. mBio 13, e0163922 (2022).

Moody, M.A. Persons with early syphilis make antibodies that differentially recognize extracellular loops of Treponema pallidum outer membrane proteins. in STI & HIV 2023 World Congress (Chicago, IL, 2023).

Delgado, K.N., et al. Antibodies directed against extracellular loops of FadL orthologs disrupt outer membrane integrity and neutralize infectivity of Treponema pallidum, the syphilis spirochete. Frontiers in Immunology Volume 16 - 2025(2026).

Delgado, K.N., et al. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. PLoS Pathog 20, e1012443 (2024).

Edmondson, D.G. & Norris, S.J. In vitro cultivation of the syphilis spirochete Treponema pallidum. Curr Protoc 1, e44 (2021).

Gupta, R., et al. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 14, 1123805 (2023).

Mohsen, M.O. & Bachmann, M.F. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol 19, 993-1011 (2022).

Barbier, A.J., Jiang, A.Y., Zhang, P., Wooster, R. & Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol 40, 840-854 (2022).

Qamsari, M.M., Rasooli, I., Chaudhuri, S., Astaneh, S.D.A. & Schryvers, A.B. Hybrid antigens expressing surface loops of ZnuD from Acinetobacter baumannii Is capable of inducing protection against infection. Front Immunol 11, 158 (2020).

Fegan, J.E., et al. Utility of hybrid transferrin binding protein antigens for protection against pathogenic Neisseria species. Front Immunol 10, 247 (2019).

Verhoeven, G.S., Alexeeva, S., Dogterom, M. & den Blaauwen, T. Differential bacterial surface display of peptides by the transmembrane domain of OmpA. PLoS One 4, e6739 (2009).

Bettin, E.B., et al. Comparison of Single- and Multi-Valent Scaffolds Displaying Treponema Pallidum Outer Membrane Protein ECL Candidate Syphilis Vaccinogens. in STI & HIV 2025 World Congress, Vol. 22 (Montreal, Canada, 2025).

Luthra, A., et al. A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J Bacteriol 197, 1906-1920 (2015).

Kumar, S., et al. Sequence variation of rare outer membrane protein β-barrel domains in clinical strains provides insights into the evolution of Treponema pallidum subsp. pallidum, the syphilis spirochete. MBio 9, e01006-01018 (2018).

Bliven, K.A. & Maurelli, A.T. Evolution of Bacterial Pathogens Within the Human Host. Microbiol Spectr 4(2016).

Sena, A.C., et al. Clinical and genomic diversity of Treponema pallidum subspecies pallidum to inform vaccine research: an international, molecular epidemiology study. Lancet Microbe, 100871 (2024).

Bettin, E.B., et al. Sequence variability of BamA and FadL candidate vaccinogens suggests divergent evolutionary paths of Treponema pallidum outer membrane proteins. bioRxiv, 2025.2004.2021.649848 (2025).

Beale, M.A., et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nature Microbiology 6, 1549-1560 (2021).

Pospisilova, P., et al. Analysis of Treponema pallidum subsp. pallidum predicted outer membrane proteins (OMPeomes) in 21 clinical samples: variant sequences are predominantly surface-exposed. mSphere, e0021325 (2025).

Salazar, J.C., et al. Treponema pallidum genetic diversity and its implications for targeted vaccine development: A cross-sectional study of early syphilis cases in Southwestern Colombia. PLoS One 19, e0307600 (2024).

Lu, S., et al. Characterization of Treponema pallidum Dissemination in C57BL/6 Mice. Frontiers in Immunology 11(2021).

Silver, A.C., et al. MyD88 deficiency markedly worsens tissue inflammation and bacterial clearance in mice infected with Treponema pallidum, the agent of syphilis. PLoS One 8, e71388 (2013).

Ferguson, M.R., et al. Use of Epivolve phage display to generate a monoclonal antibody with opsonic activity directed against a subdominant epitope on extracellular loop 4 of Treponema pallidum BamA (TP0326). Front Immunol 14, 1222267 (2023).

Downloads

Publicado

2026-01-19

Como Citar

1.
Bettin EB, Grassmann AA, Hawley KL, Caimano MJ, Radolf JD. O OMPeoma de Treponema pallidum e a busca por uma vacina contra sífilis. DST [Internet]. 19º de janeiro de 2026 [citado 24º de janeiro de 2026];. Disponível em: https://www.bjstd.org/revista/article/view/1480

Edição

Seção

Editorial