

1 **Preprint**

2 <https://doi.org/10.5327/DST-2177-8264-1480>

3 DST - J bras Doenças Sex Transm 2026;38:e1480

4 Editorial

5

6 **The *Treponema pallidum* OMPeome and the quest for a syphilis vaccine.**

7 O OMPeoma de *Treponema pallidum* e a busca por uma vacina contra sífilis.

8

9 Everton B. Bettin¹, Andre A. Grassmann¹,

10 Kelly L. Hawley^{1,2}, Melissa J. Caimano¹, Justin D. Radolf^{1,2*}

11

12 ¹Department of Medicine, UConn Health, Farmington, Connecticut, USA;

13 ²Connecticut Children's Research Institute, Hartford, Connecticut, USA.

14

15 ***Corresponding author**

16 Justin D. Radolf, M.D.

17 Department of Medicine

18 UConn Health

19 263 Farmington Avenue

20 Farmington, CT 06030-3715

21 Tel: (860) 679-8480

22 Email: jradolf@uchc.edu

23

24 **Conflict of interest statement:** Authors declare no conflict of interest.

25 Received: January 19, 2026 Preprint: January 19, 2026

26

27 **Abstract**

28 Despite more than a century of investigation, syphilis vaccine development has long been hindered
29 by the unusual outer membrane of *Treponema pallidum* subsp. *pallidum* (*TPA*) and the historical
30 inability to propagate syphilis spirochetes *in vitro*. Early observations using the rabbit model
31 established that protective, antibody-mediated immunity is achievable. The recent definition of the
32 repertoire of *TPA* outer membrane proteins (OMPs) defined the universe of potential targets for
33 protective antibodies and provided a critical foundation for the ongoing syphilis vaccine
34 development. Built on a “learning from nature” approach, the mapping of antibody responses
35 elicited during natural infection against OMPs allowed the identification and prioritization of
36 extracellular loops (ECLs) as vaccine targets. Immunization of animals with protein scaffolds
37 displaying these targets generates high titers of antibodies able to recognize surface-exposed
38 regions of the spirochete. Recent advances in long-term *in vitro* cultivation and genetic
39 manipulation of *TPA* have enabled the development of assays to directly evaluate the functional
40 activity of ECL-specific antibodies in promoting opsonophagocytosis, growth inhibition,
41 impairment of motility, and outer membrane disruption. Next-generation platforms are being
42 explored to enhance immunogenicity, simplify production, and facilitate scalable translation of
43 these immunogens toward clinical evaluation. In parallel, researchers are uncovering the sequence
44 variability in OMPs across circulating *TPA* strains to understand how mutations can affect antibody
45 recognition and global vaccine efficacy. Collectively, these advances position the field to leverage
46 structural, immunological, and microbiological insights to counter the stealth pathogen and,
47 ultimately, achieve an effective syphilis vaccine.

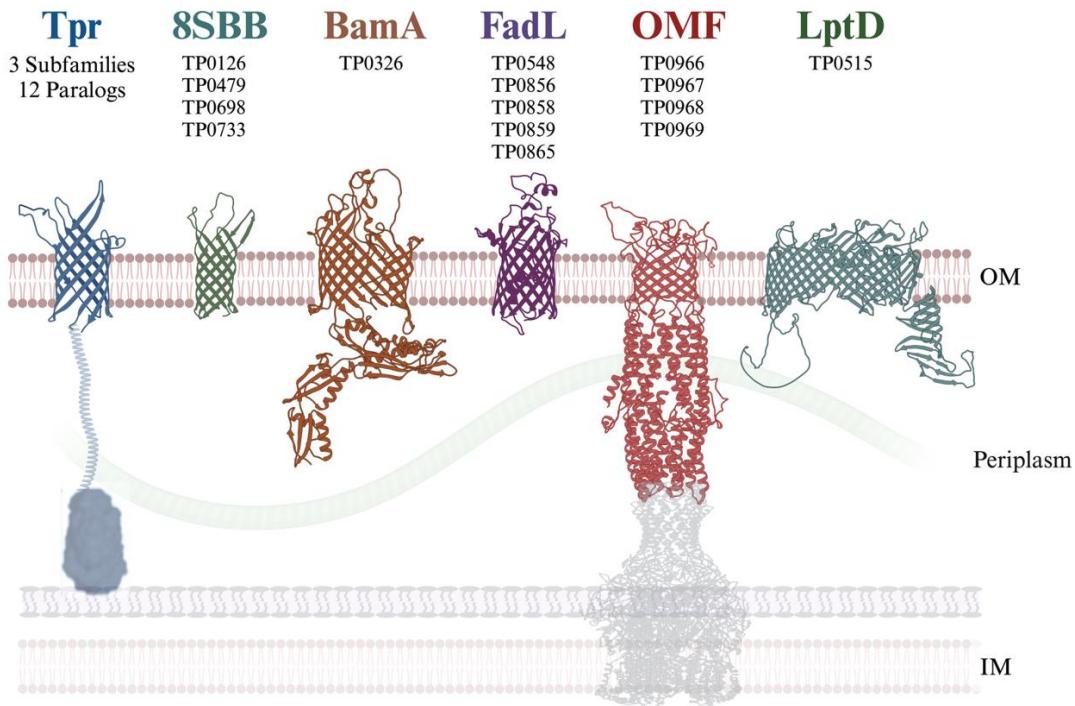
48 **Resumo**

49 Apesar de mais de um século de investigação, o desenvolvimento de uma vacina contra a sífilis
50 tem sido historicamente dificultado pela membrana externa incomum de *Treponema pallidum*
51 subsp. *pallidum* (*TPA*) e pela incapacidade de propagar a espiroqueta *in vitro*. Observações iniciais
52 utilizando o modelo animal coelho demonstraram que uma imunidade protetora mediada por
53 anticorpos é possível. A recente descoberta do repertório de proteínas de membrana externa
54 (OMPs) de *TPA* definiu os possíveis alvos de anticorpos protetores e promoveu a base para o
55 desenvolvimento atual de vacinas contra sífilis. Baseando-se em uma abordagem denominada
56 “Learning from nature”, o mapeamento dos anticorpos induzidos durante a infecção natural contra
57 as OMPs permitiu a identificação e priorização de loops extracelulares (ECLs) como alvos
58 vacinais. A imunização de animais com scaffolds proteicos exibindo esses alvos gera títulos
59 elevados de anticorpos capazes de reconhecer regiões expostas na superfície do espiroqueta.
60 Avanços recentes no cultivo *in vitro* de longo prazo e na manipulação genética de *TPA*
61 possibilitaram o desenvolvimento de ensaios para avaliar diretamente a atividade funcional desses
62 anticorpos na promoção da opsonofagocitose, inibição do crescimento, comprometimento da
63 motilidade e ruptura da membrana externa. Plataformas de segunda geração estão sendo
64 exploradas para aumentar a imunogenicidade, simplificar a produção e facilitar a escalabilidade
65 desses imunógenos até ensaios clínicos. Paralelamente, pesquisadores estão identificando a
66 variabilidade da sequência de OMPs entre cepas circulantes de *TPA* para compreender como
67 mutações podem afetar a ligação de anticorpos e a eficácia global da vacina. Coletivamente, esses
68 avanços posicionam estrategicamente o campo para englobar conhecimentos estruturais,
69 imunológicos e microbiológicos, visando finalmente, alcançar uma vacina eficaz contra a sífilis.

71 **Introduction: A syphilis vaccine is feasible**

72 Syphilis has been recognized as one of the most feared sexually transmitted diseases since
73 the late 15th century, with devastating clinical manifestations and enduring social stigma ¹. The
74 modern era of investigation into this enigmatic disease began in 1906 with the identification of its
75 causative agent, the spirochetal pathogen *Treponema pallidum* subsp. *pallidum* (*TPA*), by
76 Schaudinn and Hoffmann ². Despite more than a century of research, the development of a syphilis
77 vaccine has lagged behind other bacterial pathogens, largely due to the unusual outer membrane
78 biology of *TPA* ³ and the historical inability to propagate syphilis spirochetes *in vitro*.
79 Nevertheless, early observations established that protective immunity against *TPA* is achievable
80 ^{4,5}. This concept was strengthened by a landmark 1948 study by Magnuson and Rosenau ^{6,7}, which
81 demonstrated that rabbits infected with *TPA* for increasing lengths of time prior to penicillin
82 treatment required progressively higher challenge inocula to develop symptomatic reinfection.

83 Although these findings provided compelling evidence for acquired immunity, the
84 immunological basis of protection remained unclear. Subsequent studies pointing to antibodies
85 showed that preincubation of *TPA* with immune rabbit sera (IRS) ⁸ or human syphilitic sera (HSS)
86 ⁹ reduced lesion formation in rabbits, providing the first direct evidence that protective factors
87 resided in immune sera. Passive immunization experiments later confirmed antibodies as central
88 mediators of host defense against *TPA* ^{10,11}. The mechanism by which these functional antibodies
89 conferred protection was ultimately clarified through studies using rabbit peritoneal macrophages,
90 which identified opsonophagocytosis as a primary pathway for spirochete clearance ¹². Together,
91 these observations provided proof that protective antibodies must recognize antigens exposed on
92 the spirochete surface – an insight that continues to guide contemporary syphilis vaccine
93 development. The ability of antibodies to serve as mediators of protective immunity is in accord
94 with evidence that the syphilis spirochete is an extracellular bacterium ¹³.


95

96 **The *TPA* OMPeome and the quest for syphilis vaccine candidates**

97 With evidence in hand that functional antibodies can mediate protection, the syphilis
98 vaccine field was confronted with a central question: which surface-exposed antigens of *TPA* serve
99 as targets of protective immunity? Identifying such antigens proved unusually challenging due to

100 the atypical ultrastructure of the *TPA* outer membrane (OM), a defining feature of the bacterium
101 that led to its designation as a “stealth pathogen”^{3,14}. Unlike most diderm bacteria, *TPA* lacks the
102 highly antigenic lipopolysaccharide (LPS) and, instead, possesses an OM in which surface-
103 exposed outer membrane proteins (OMPs) are present at exceptionally low density, resulting in
104 poor immunogenicity¹⁵. The intrinsic fragility of the *TPA* OM further complicated early efforts to
105 identify surface-exposed targets. Routine sample preparation often leads to disruption of the
106 spirochete’s OM, producing artifactual surface labeling and erroneous conclusions about surface
107 exposure that shaped decades of unsuccessful vaccine strategies^{3,16}. Subsequent microscopy and
108 immunofluorescence analyzes using antisera against a panel of recombinant, highly antigenic
109 lipoproteins (e.g., Tpp15/TP0171, Tpp17/TP0435, TP0971/Tpp34, and Tpp47/TP0574)
110 demonstrated that these immunogens are located beneath the OM (*i.e.*, within the periplasm) rather
111 than exposed on the spirochete surface^{17,18}. These observations reinforced the emerging view that
112 only integral OMPs are antibody-accessible and, therefore, *bona fide* targets of functional
113 antibodies.

114 The completion of the *TPA* genome in 1998^{19,20} appeared to offer a straightforward path
115 for systematic identification of *TPA* OMPs. However, early genome-mining efforts failed to
116 identify candidates with sequence homology to canonical Gram-negative OMPs³. After years of
117 largely unproductive searches for sequence-based orthologs, a conceptual shift in the field
118 occurred when our group adopted a structure-based strategy focused instead on the identification
119 of proteins predicted to form β-barrels²¹, a defining feature of transmembrane OMPs²². This
120 approach enabled the identification of the spirochete’s OMP repertoire, or the *TPA* ‘OMPeome’,
121 and provided a critical foundation for the ongoing syphilis vaccine development. More recently,
122 advances in protein structure prediction and machine-based learning approaches have further
123 expanded the OMP repertoire²³, revealing that the *TPA* OM, while sparsely populated, is more
124 complex and Gram-negative-like than originally appreciated. The currently known *TPA*
125 OMPeome includes two stand-alone proteins, BamA and LptD, both involved in OM biogenesis,
126 and four paralogous families involved in nutrient uptake or extrusion of noxious substances across
127 the OM: 8-stranded β-barrels, OM factors for efflux pumps, *TPA* repeat proteins (Tpr), and
128 orthologs for FadL long-chain fatty acid transporters (Figure 1)²³.

129

130

Figure 1. The *TPA* OMPeome

131

132 **Learning from nature to prioritize vaccine targets.**

133 The definition of the *TPA* OMPeome established the potential targets for functional
 134 antibodies responsible for protection against reinfection. Mapping the natural antibody responses
 135 to OMPs elicited during infection, underpinning a “learning from nature” strategy, provided a
 136 rational framework for prioritizing vaccine candidates^{24,25}. To characterize this response, IRS and
 137 HSS are interrogated against identified *TPA* OMPs. However, full-length recombinant OMPs are
 138 notoriously difficult to express in heterologous systems (e.g., *E. coli*) and often fail to adopt or
 139 maintain their native conformations outside the context of the OM²⁶. Because proper folding and
 140 preservation of conformational epitopes are essential for accurately assessing antibody
 141 recognition, this limitation required alternative experimental strategies. Although OMPs are the
 142 surface-exposed targets of *TPA*, the majority of each protein is embedded within the membrane,
 143 with only discrete extracellular loops (ECLs) accessible to antibody binding²⁷. Recent advances
 144 in protein structural prediction^{28,29} have enabled precise mapping of these ECLs. Guided by these

145 structural predictions, our group developed a structure-based approach in which individual *TPA*
146 ECLs were displayed on a *Pyrococcus furiosus* thioredoxin (*PfTrx*) scaffold³⁰ to generate soluble,
147 conformationally constrained ECL antigens. This approach circumvented the technical challenges
148 associated with full-length OMPs and enabled systematic identification of accessible,
149 immunologically relevant regions within *TPA* OMPs^{24,25}. Using this platform, we have identified
150 multiple ECLs that are immunogenic during both rabbit and human infection, providing direct
151 evidence that the host immune system can, and does, recognize these rare surface-exposed targets
152 during natural infection^{25,31-33}. Together, these findings support the rational prioritization of
153 surface-exposed targets for syphilis vaccine development.

154

155 **Current strategies to develop a syphilis vaccine**

156 Building on the ‘learning from nature’ conceptual framework, another central question is
157 whether immunogenic ECLs can elicit functional, protective antibody responses upon
158 immunization. Along these lines, immunogenic ECLs from BamA and three FadL orthologs
159 (TP0856, TP0858 and TP0865) served as our initial targets for immunization studies. As expected,
160 immunization of rabbits and mice with individual *PfTrx*-ECL constructs elicited high titers of
161 ECL-specific IgG, confirming that these regions retain immunogenicity by artificial immunization
162 when displayed on a scaffold^{31,34}. However, immunogenicity alone is insufficient; to qualify as
163 effective vaccine antigens, the elicited antibodies must promote spirochete clearance. Recent
164 advances in long-term *in vitro* cultivation³⁵ and genetic manipulation of *TPA* enabled our group
165 to systematically evaluate sera obtained from immunized animals across multiple functional
166 assays. These studies revealed that ECL-directed antibodies contribute to *TPA* clearance through
167 complementary mechanisms. Sera from animals immunized with *PfTrx*-ECLs promoted
168 opsonophagocytosis of *TPA* by both rabbit peritoneal macrophages and murine bone marrow-
169 derived macrophages at levels comparable to those observed with immune serum generated during
170 infection³⁴. In addition to enhancing phagocytic uptake, ECL-specific sera impaired multiple
171 aspects of spirochete biology *in vitro*, including reductions in viability, motility, and host-cell
172 attachment^{13,33,34}. Our findings further indicated that ECL-specific antibodies may interfere with
173 OMP function, ultimately compromising the integrity of the fragile *TPA* OM. To directly assess

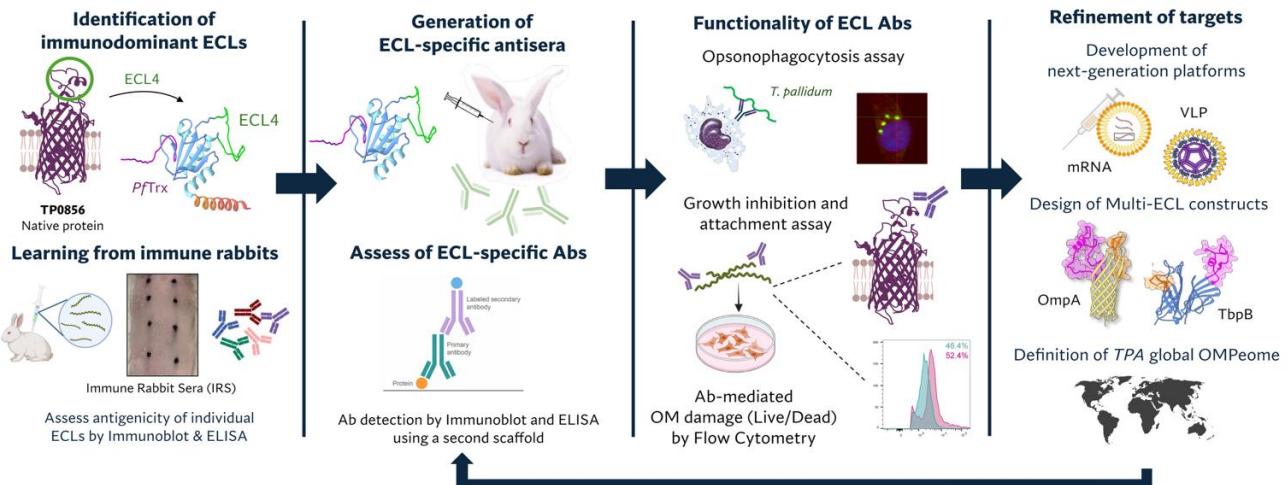
174 this possibility, we engineered a *TPA* strain constitutively expressing green fluorescent protein
175 (GFP)¹³. Using a flow cytometry-based assay, we observed that incubation of *TPA* with *PfTrx*-
176 ECL antisera promoted OM disruption and dose-dependent growth inhibition *in vitro*, providing
177 direct evidence that surface-directed antibodies can exert bactericidal effects against the spirochete
178^{13,33}. Importantly, findings were not limited to *in vitro* assays; intradermal challenge of rabbits
179 using treponemes pre-incubated with growth-inhibitory ECL-specific antibodies resulted in absent
180 or transient lesions with substantially lower bacterial burdens³³. Although a formal correlate of
181 protection for syphilis has yet to be established, the combined readouts of opsonophagocytosis,
182 growth inhibition, impairment of motility, OM disruption, and neutralization of infectivity now
183 provide quantitative functional surrogates previously lacking in the field, enabling a rationale
184 evaluation of vaccine candidates to be prioritized²⁵.

185 While recombinant *PfTrx*-ECL immunogens establish proof of concept, next-generation
186 platforms also are being explored to enhance immunogenicity, simplify production, and facilitate
187 scalability towards clinical evaluation. We recently developed mRNA-based immunogens
188 encoding *PfTrx*-*TPA* ECLs previously shown to elicit functional antibodies as recombinant
189 proteins (unpublished data). These constructs are efficiently translated *in vivo* and induce antibody
190 responses upon immunization, representing a notable achievement in vaccine development for
191 syphilis. In parallel, we have generated virus-like particle (VLP)-based immunogens (unpublished
192 data), which provide highly ordered, repetitive antigen display and are well known to elicit potent
193 humoral and cellular immune responses^{36,37}. Both platforms can stimulate strong immunity even
194 in the absence of external adjuvants, simplifying formulation, storage and manufacturing relative
195 to recombinant protein-based approaches, while also supporting rapid and scalable production
196^{37,38}.

197 The low antigenic density of the *TPA* surface and inter-individual variability in immune
198 responses suggest that an effective syphilis vaccine likely will require a multivalent strategy.
199 Scaffolds capable of simultaneously displaying multiple ECLs therefore represent a logical next
200 step, enabling presentation of multiple protective epitopes by a single immunogen. To this end,
201 our group has designed multivalent scaffolds accommodating up to four ECLs, including the
202 C-lobe of *Neisseria meningitidis* transferrin-binding protein B (TbpB)^{39,40} and a truncated form
203 of *Escherichia coli* OmpA (OmpAtr)⁴¹. These constructs elicit robust antibody responses against

204 multiple ECLs without compromising reactivity to individual components, achieving titers
205 comparable to those induced by single-ECL *PfTrx* constructs⁴².

206 **Insights from the global *TPA* OMPeome**


207 Collectively, these complementary strategies highlight promising paths toward a syphilis
208 vaccine capable of achieve broad, global protection. Reaching this goal, however, requires explicit
209 consideration of the sequence variability present in vaccine targets across circulating *TPA* strains
210 worldwide, as even single amino acid substitutions can alter antibody recognition and compromise
211 vaccine efficacy^{43,44}. Analysis of sequence variability is particularly critical for immunogenic,
212 surface-exposed ECLs, where strong antibody binding is expected to impose immune pressure and
213 promote the emergence of escape variants⁴⁵. Our group and others have sequenced clinical *TPA*
214 strains from multiple geographic regions to define the global *TPA* OMPeome, the complete set of
215 OMP variants across circulating strains^{46,47,48}, Lieberman, 2021 #5474,49. These analyses revealed
216 sequence variability within *TPA* OMPs in regions predicted to be extracellular and harboring B
217 cell epitopes, suggesting that host immune pressure is a major driver of OMP diversity^{46,47}.
218 Notably, and somewhat surprisingly, many vaccine-relevant ECLs that elicit functional antibodies
219 upon immunization (e.g., BamA ECL4, TP0856 ECL2 and ECL4) remain highly conserved within
220 clinical strains^{46,47}. The persistence of sequence invariance in these ECLs, despite their
221 immunogenicity, raises intriguing questions regarding the nature and magnitude of immune
222 pressure acting on them during natural infection. One possibility is that strong functional or
223 structural constraints limit protein diversification without compromising essential OMP function
224⁴⁷. Alternatively, antibodies generated during natural infection may be quantitatively or
225 qualitatively insufficient to exert meaningful selective pressure. These observations underscore an
226 additional layer of complexity in vaccine design, highlighting potential differences between
227 infection- and vaccine-induced antibody responses. For protein regions with more variability (e.g.,
228 TP0858 ECL4, TP0865 ECL3), our identification of alternative proteoforms circulating within
229 distinct clinical lineages enables prediction of how naturally occurring mutations may influence
230 antibody recognition of ‘wild-type’ epitopes^{47,50}. Incorporating these insights refines antigen
231 prioritization and supports rational vaccine design strategies that explicitly account for global
232 sequence diversity within the *TPA* OMPeome. Ultimately, understanding how immune and

233 evolutionary pressures shape OMP variation in *TPA* is essential for identifying vaccine targets that
234 are both biologically indispensable and capable of eliciting durable, protective immunity.

235

236 **Concluding remarks**

237 The past decade has marked a turning point in syphilis vaccine research, shifting the field
238 from questioning whether a vaccine is achievable to defining how one can be designed rationally.
239 Rapid and coordinated advances in structural biology, immunology, and microbiology have
240 reshaped our understanding of *TPA*. The growing evidence that immunization can elicit functional
241 antibodies against surface-exposed targets has provided a mechanistic framework for comparing
242 immunogens and prioritizing those with the greatest potential to elicit protective immunity
243 (Figure 2). Although current functional readouts capture key mechanistic properties of antibody
244 activity against *TPA*, they represent surrogate measures rather than definitive predictors of
245 protection. Establishing true correlates of protection will require directly linking antibody
246 functionality to protection outcomes in well-controlled challenge studies. In this regard, reductions
247 in lesion development and treponemal dissemination following rabbit infection remain the gold-
248 standard endpoints for evaluating protective immunity. Expanding these analyses through the
249 development and refinement of additional animal models, including murine systems^{51,52}, will
250 further facilitate systematic evaluation of immune responses and vaccine efficacy^{34,53}.
251 Establishing robust correlates of protection will be critical for translating promising immunogens
252 into clinical trials, as such benchmarks are required to predict protective immunity in humans³³.
253 Recent progress indicates that the remaining barriers in syphilis vaccine development are no longer
254 conceptual but technical. Over the coming years, the field is poised to integrate rationally designed
255 antigens, quantitative immunological metrics, and scalable translational platforms to advance the
256 most promising candidates from bench to clinic. With this foundation in place, syphilis vaccine
257 research is now well-positioned to counter the stealth pathogen and, ultimately, achieve a safe and
258 effective vaccine for a disease that has inflicted untold misery upon humankind for centuries¹.

259

260 **Figure 2. Framework for development of a syphilis vaccine.**

261

262 **REFERENCES**

263 1. Galli, M. & Fois, L. The Centenary Series - STIs Through the Ages: The dawn of the
264 syphilis pandemic in the Old World: history and geography of syphilis in the early
265 sixteenth century. *Sex Transm Infect* **101**, 355-360 (2025).

266 2. Waugh, M. The centenary of *Treponema pallidum*: on the discovery of Spirochaeta
267 pallida. *Skinmed* **4**, 313-315 (2005).

268 3. Radolf, J.D. & Kumar, S. The *Treponema pallidum* outer membrane. *Curr Top Microbiol*
269 *Immunol* **415**, 1-38 (2018).

270 4. Chesney, A.M. Immunity in syphilis. *Medicine (Baltimore)* **5**(1926).

271 5. Radolf, J.D. & Lukehart, S.A. Immunology of Syphilis. in *Pathogenic Treponemes: Cellular and Molecular Biology* (eds. Radolf, J.D. & Lukehart, S.A.) 285-322 (Caister Academic Press, Norfolk, UK, 2006).

274 6. Magnuson, H.J., Rosenau, B.J. & Clark, J.W., Jr. The duration of acquired immunity in
275 experimental syphilis. *Am J Syph Gonorrhea Vener Dis* **33**, 297-302 (1949).

276 7. Magnuson, H.J. Current concepts of immunity in syphilis. *Am J Med* **5**, 641-654 (1948).

277 8. Turner, T.B. Protective antibodies in the serum of syphilitic rabbits. *J Exp Med* **69**, 867-
278 890 (1939).

279 9. Turner, T.B., Kluth, F.C. & et al. Protective antibodies in the serum of syphilitic patients.
280 *Am J Hyg* **48**, 173-181 (1948).

281 10. Perine, P.L., Weiser, R.S. & Klebanoff, S.J. Immunity to syphilis. I. Passive transfer in
282 rabbits with hyperimmune serum. *Infect Immun* **8**, 787-790 (1973).

283 11. Bishop, N.H. & Miller, J.N. Humoral immunity in experimental syphilis. I. The
284 demonstration of resistance conferred by passive immunization. *J Immunol* **117**, 191-
285 196 (1976).

286 12. Lukehart, S.A. & Miller, J.N. Demonstration of the *in vitro* phagocytosis of *Treponema*
287 *pallidum* by rabbit peritoneal macrophages. *J Immunol* **121**, 2014-2024 (1978).

288 13. Delgado, K.N., et al. Development and utilization of *Treponema pallidum* expressing
289 green fluorescent protein to study spirochete-host interactions and antibody-
290 mediated clearance: expanding the toolbox for syphilis research. *mBio* **16**, e0325324
291 (2025).

292 14. Radolf, J.D., et al. *Treponema pallidum*, the syphilis spirochete: making a living as a
293 stealth pathogen. *Nat Rev Microbiol* (2016).

294 15. Radolf, J.D., Norgard, M.V. & Schulz, W.W. Outer membrane ultrastructure explains
295 the limited antigenicity of virulent *Treponema pallidum*. *Proc Natl Acad Sci U S A* **86**,
296 2051-2055 (1989).

297 16. Cox, D.L., Chang, P., McDowell, A.W. & Radolf, J.D. The outer membrane, not a coat
298 of host proteins, limits antigenicity of virulent *Treponema pallidum*. *Infect Immun* **60**,
299 1076-1083 (1992).

300 17. Cox, D.L., Akins, D.R., Porcella, S.F., Norgard, M.V. & Radolf, J.D. *Treponema pallidum*
301 in gel microdroplets: a novel strategy for investigation of treponemal molecular
302 architecture. *Mol Microbiol* **15**, 1151-1164 (1995).

303 18. Deka, R.K., et al. Crystal structure of the Tp34 (TP0971) lipoprotein of *Treponema*
304 *pallidum*: implications of its metal-bound state and affinity for human lactoferrin. *J*
305 *Biol Chem* **282**, 5944-5958 (2007).

306 19. Weinstock, G.M., Hardham, J.M., McLeod, M.P., Sodergren, E.J. & Norris, S.J. The
307 genome of *Treponema pallidum*: new light on the agent of syphilis. *FEMS Microbiol*
308 *Rev* **22**, 323-332 (1998).

309 20. Fraser, C.M., et al. Complete genome sequence of *Treponema pallidum*, the syphilis
310 spirochete. *Science* **281**, 375-388 (1998).

311 21. Cox, D.L., et al. Surface immunolabeling and consensus computational framework
312 to identify candidate rare outer membrane proteins of *Treponema pallidum*. *Infect*
313 *Immun* **78**, 5178-5194 (2010).

314 22. Koebnik, R., Locher, K.P. & Van Gelder, P. Structure and function of bacterial outer
315 membrane proteins: barrels in a nutshell. *Mol Microbiol* **37**, 239-253 (2000).

316 23. Hawley, K.L., et al. Structural modeling of the *Treponema pallidum* OMPeome: a
317 roadmap for deconvolution of syphilis pathogenesis and development of a syphilis
318 vaccine. *J Bacteriol* **203**, e0008221 (2021).

319 24. Delgado, K.N., et al. Pyrococcus furiosus thioredoxin (PfTrx) scaffolds displaying
320 extracellular loops of *Treponema pallidum* outer membrane proteins: “learning from
321 nature” in the search for syphilis vaccine candidates. in *2023 STI and HIV World*
322 *Congress* (Chicago, IL, 2023).

323 25. Liu, A., et al. New pathways in syphilis vaccine development. *Sex Transm Dis* (2024).

324 26. Carpenter, E.P., Beis, K., Cameron, A.D. & Iwata, S. Overcoming the challenges of
325 membrane protein crystallography. *Curr Opin Struct Biol* **18**, 581-586 (2008).

326 27. Hayashi, S., Buchanan, S.K. & Botos, I. The name is barrel, beta-barrel. *Methods Mol*
327 *Biol* **2778**, 1-30 (2024).

328 28. Abramson, J., et al. Accurate structure prediction of biomolecular interactions with
329 AlphaFold 3. *Nature* (2024).

330 29. Cramer, P. AlphaFold2 and the future of structural biology. *Nat Struct Mol Biol* **28**, 704-
331 705 (2021).

332 30. Canali, E., et al. A high-performance thioredoxin-based scaffold for peptide
333 immunogen construction: proof-of-concept testing with a human papillomavirus
334 epitope. *Sci Rep* **4**, 4729 (2014).

335 31. Delgado, K.N., et al. Extracellular loops of the *Treponema pallidum* FadL orthologs
336 TP0856 and TP0858 elicit IgG antibodies and IgG(+)-specific B-cells in the rabbit
337 model of experimental syphilis. *mBio* **13**, e0163922 (2022).

338 32. Moody, M.A. Persons with early syphilis make antibodies that differentially recognize
339 extracellular loops of *Treponema pallidum* outer membrane proteins. in *STI & HIV*
340 *2023 World Congress* (Chicago, IL, 2023).

341 33. Delgado, K.N., et al. Antibodies directed against extracellular loops of FadL orthologs
342 disrupt outer membrane integrity and neutralize infectivity of *Treponema pallidum*,
343 the syphilis spirochete. *Frontiers in Immunology* **Volume 16 - 2025**(2026).

344 34. Delgado, K.N., et al. Immunodominant extracellular loops of *Treponema pallidum*
345 FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory
346 activities. *PLoS Pathog* **20**, e1012443 (2024).

347 35. Edmondson, D.G. & Norris, S.J. In vitro cultivation of the syphilis spirochete
348 *Treponema pallidum*. *Curr Protoc* **1**, e44 (2021).

349 36. Gupta, R., et al. Platforms, advances, and technical challenges in virus-like particles-
350 based vaccines. *Front Immunol* **14**, 1123805 (2023).

351 37. Mohsen, M.O. & Bachmann, M.F. Virus-like particle vaccinology, from bench to
352 bedside. *Cell Mol Immunol* **19**, 993-1011 (2022).

353 38. Barbier, A.J., Jiang, A.Y., Zhang, P., Wooster, R. & Anderson, D.G. The clinical progress
354 of mRNA vaccines and immunotherapies. *Nat Biotechnol* **40**, 840-854 (2022).

355 39. Qamsari, M.M., Rasooli, I., Chaudhuri, S., Astaneh, S.D.A. & Schryvers, A.B. Hybrid
356 antigens expressing surface loops of ZnuD from *Acinetobacter baumannii* is capable
357 of inducing protection against infection. *Front Immunol* **11**, 158 (2020).

358 40. Fegan, J.E., et al. Utility of hybrid transferrin binding protein antigens for protection
359 against pathogenic *Neisseria* species. *Front Immunol* **10**, 247 (2019).

360 41. Verhoeven, G.S., Alexeeva, S., Dogterom, M. & den Blaauwen, T. Differential bacterial
361 surface display of peptides by the transmembrane domain of OmpA. *PLoS One* **4**,
362 e6739 (2009).

363 42. Bettin, E.B., et al. Comparison of Single- and Multi-Valent Scaffolds Displaying
364 *Treponema Pallidum* Outer Membrane Protein ECL Candidate Syphilis Vaccinogens.
365 in *STI & HIV 2025 World Congress*, Vol. 22 (Montreal, Canada, 2025).

366 43. Luthra, A., et al. A homology model reveals novel structural features and an
367 immunodominant surface loop/opsonic target in the *Treponema pallidum* BamA
368 ortholog TP_0326. *J Bacteriol* **197**, 1906-1920 (2015).

369 44. Kumar, S., et al. Sequence variation of rare outer membrane protein β -barrel domains
370 in clinical strains provides insights into the evolution of *Treponema pallidum* subsp.
371 *pallidum*, the syphilis spirochete. *MBio* **9**, e01006-01018 (2018).

372 45. Bliven, K.A. & Maurelli, A.T. Evolution of Bacterial Pathogens Within the Human Host.
373 *Microbiol Spectr* **4**(2016).

374 46. Sena, A.C., et al. Clinical and genomic diversity of *Treponema pallidum* subspecies
375 *pallidum* to inform vaccine research: an international, molecular epidemiology study.
376 *Lancet Microbe*, 100871 (2024).

377 47. Bettin, E.B., et al. Sequence variability of BamA and FadL candidate vaccinogens
378 suggests divergent evolutionary paths of *Treponema pallidum* outer membrane
379 proteins. *bioRxiv*, 2025.2004.2021.649848 (2025).

380 48. Beale, M.A., et al. Global phylogeny of *Treponema pallidum* lineages reveals recent
381 expansion and spread of contemporary syphilis. *Nature Microbiology* **6**, 1549-1560
382 (2021).

383 49. Pospisilova, P., et al. Analysis of *Treponema pallidum* subsp. *pallidum* predicted outer
384 membrane proteins (OMPeomes) in 21 clinical samples: variant sequences are
385 predominantly surface-exposed. *mSphere*, e0021325 (2025).

386 50. Salazar, J.C., et al. *Treponema pallidum* genetic diversity and its implications for
387 targeted vaccine development: A cross-sectional study of early syphilis cases in
388 Southwestern Colombia. *PLoS One* **19**, e0307600 (2024).

389 51. Lu, S., et al. Characterization of *Treponema pallidum* Dissemination in C57BL/6 Mice.
390 *Frontiers in Immunology* **11**(2021).

391 52. Silver, A.C., *et al.* MyD88 deficiency markedly worsens tissue inflammation and
392 bacterial clearance in mice infected with *Treponema pallidum*, the agent of syphilis.
393 *PLoS One* **8**, e71388 (2013).

394 53. Ferguson, M.R., *et al.* Use of Epivolve phage display to generate a monoclonal
395 antibody with opsonic activity directed against a subdominant epitope on
396 extracellular loop 4 of *Treponema pallidum* BamA (TP0326). *Front Immunol* **14**,
397 1222267 (2023).